Modification in Responses to Asthma Treatment by Environmental and Social Exposures

A Secondary Analysis of AsthmaNet Clinical Trials

DATE 04/29/2024

PRESENTED BY Lizbeth Gomez, MPH, PhD (c)

Agenda

INTRODUCTION & BACKGROUND

AIM 1

ICS Step-up and Asthma Modification by Indicators of Healthcare Access

AIM 2

ICS + LABA Step-up and Asthma Modification by Air Pollution

AIM 3

Effects of Air Pollution on Asthma by Asthma Phenotype and Treatment

56

NEXT STEPS

59

60

57

Q&A

IMPLICATIONS

What are the implications of this work on the field?

Future Steps & Research Prospects

ACKNOWLEDGEMENTS

Background

- Health impacts of air pollution
- Vast research on air pollution (and socio-environmental) exposures and asthma
- Mechanisms by which air pollution and social context act on asthma

Background

- Health impacts of air pollution
- Vast research on air pollution and social cont
- Mechanisms by which AP and social context c

DOI: 10.1007/s11882-022-01034-1

Asthma

- Heterogeneous disease (s)
- Characteristics
 - Reversible airway obstruction
 - Hyperresponsiveness
 - Inflammation
- Prevalent in the US and Worldwide

Current Asthma Prevalence: United States, 2001–2021

Source: CDC Asthma Surveillance Team

Randomized Clinical Trials for Asthma

Clinical Trials

- Clinical trials for asthma
 - The gold standard for clinical recommendations
 - High-quality data
 - Longitudinal
- ~19% of the global share of RCT

- Generalizability
- Transportability

The Problem

Despite the widespread availability of asthma treatments, their efficacy varies across individuals. These differences in treatment efficacies are often attributed to individual-level risk factors.

The Problem

Despite the widespread availability of asthma treatments, their efficacy varies across individuals. These differences in treatment efficacies are often attributed to individual-level risk factors.

However, distinct societal-level patterns exist.

Black and Hispanic individuals in the U.S. face the HIGHEST BURDEN OF ASTHMA

Black Americans are nearly 1.5 times more likely to have asthma

Black Americans are nearly 5 times more likely to have visit the ER and 3 times more likely to die from asthma Puerto Ricans are nearly 2 times more likely to have asthma

Source: Asthma and Allergy Foundation of America

Adult Current Asthma Prevalence (%) by State or Territory (2021)

< 8.8% 8.8-<9.6%

- 9.6-<10.3%
- 10.3-<11.1%

• 11.1%+

No data

Puerto Rico

Virgin Islands

The Problem

Despite the widespread availability of asthma treatments, their efficacy varies across individuals. These differences in treatment efficacies are attributed to individual-level risk factors

However, distinct societal-level patterns exist.

Few studies have evaluated the potential for air pollution and social context to modify the association between treatment and asthma outcomes.

The Problem

Few studies have evaluated the potential for air pollution and social context to modify the association between treatment and asthma outcomes.

> Environmental & Social Co-Exposures Susceptible Populations Phenotypes as susceptibilities

GIS-Based Methods

GIS-Based Methods

• Modeled air pollution in 2-week concentration resolution

- Averaged pollutant estimates
 from a national universal kriging
 model
- Estimated for individual's geocoded residence

GIS-Based Methods

Modeled air pollution in 2-week concentration resolution

 Averaged pollutant estimates using a national universal kriging model

• ACS 5-year summary (2012-16),

- block group level.
- U.S. Health Resources and Services
 - Administration

AsthmaNet

Same protocols across 17 US cities

Air Pollution Exposure in AsthmaNet Trials

Trial City	Ν	NO ₂ (ppb)	PM 2.5	O3 (ppb)
			(µg/m ³)	
Boston, MA	41	6.66 (2.56)	5.97 (1.10)	27.95 (2.53)
Chicago, IL	18	7.09 (2.80)	10.01 (1.14)	28.18 (1.34)
New York, NY	8	5.19 (0.44)	10.04 (0.25)	29.28 (1.24
Denver, CO	72	9.46 (4.59)	6.49 (0.79)	22.55 (2.72)
Albuquerque, NM	23	6.12 (1.22)	5.04 (0.93)	24.43 (1.49)
Madison, WI	80	8.84 (3.49)	7.29(1.01)	24.90 (3.92)
Pittsburgh, PA	39	8.96(3.05)	8.72 (1.26)	26.90 (4.63)
Cleveland, OH	26	8.49(1.12)	7.87 (0.96)	25.10 (1.85)
Wake Forest, NC	4	10.68 (2.8)	8.66 (0.82)	25.20 (4.01)
Saint Louis, MO	96	6.43(2.96)	8.50 (0.91)	25.91 (3.84)
San Francisco /Oakland, CA	23	12.85 (7.32)	7.63(1.85)	31.89 (3.89)
Raleigh/Durham, NC	28	10.47 (2.55)	7.94 (1.41)	22.03 (2.32)
Tucson, AZ	59	19.65 (6.56)	6.86 (1.58)	26.96 (4.66)
Atlanta, GA	52	17.64 (4.73)	8.53 (0.91)	27.83 (4.45)
Jacksonville, FL	41	13.22 (5.79)	6.87 (0.33)	28.81 (6.39)
Orlando, FL	34	11.65(5.85	5.99 (0.47)	24.30 (3.35)

ICS Step-Up and Asthma as Modified by Indicators of Healthcare Access

\mathbf{AIM}

Step-Up and Asthma Modification by Indicators of Healthcare Access

AGES 5-11 YEARS: STEPWISE APPROACH FOR MANAGEMENT OF ASTHMA

	Intermittent Asthma Management of Persistent Asthma in Individuals Ages 5–11 Y					11 Years
					STEP 5	STEP 6
Treatment	STEP 1	STEP 2	STEP 3	STEP 4		
Preferred	PRN SABA	Daily low-dose ICS and PRN SABA	Daily and PRN combination low-dose ICS-formoterol	Daily and PRN combination medium-dose ICS-formoterol A	Daily high-dose ICS-LABA and PRN SABA	Daily high-dose ICS-LABA + oral systemic corticosteroid and PRN SABA
Alternative		Daily LTRA,* or Cromolyn,* or Nedocromil,* or Theophylline,* and PRN SABA	Daily medium- dose ICS and PRN SABA or Daily low-dose ICS-LABA, or daily low-dose ICS + LTRA,* or daily low-dose ICS +Theophylline,* and PRN SABA	Daily medium- dose ICS-LABA and PRN SABA or Daily medium- dose ICS + LTRA* or daily medium- dose ICS + Theophylline,* and PRN SABA	Daily high-dose ICS + LTRA* or daily high-dose ICS + Theophylline,* and PRN SABA	Daily high-dose ICS + LTRA* + oral systemic corticosteroid or daily high-dose ICS + Theophylline* + oral systemic corticosteroid, and PRN SABA
		Steps 2–4: Conditional immunotherapy as an in individuals ≥ 5 years initiation, build up, and	Ity recommend the use o adjunct treatment to sta of age whose asthma is a maintenance phases of	f subcutaneous ndard pharmacotherapy controlled at the immunotherapy	Consider On	nalizumab**▲
			Access	Control		

National Asthma Education and Prevention Program (NAEPP) Coordinating Committee Expert Panel Working Group, December 2020

GINA 2023 – Children 6–11 years

Personalized asthma management: Assess, Adjust, Review

Asthma medication options: Adjust treatment up and down for

PREFERRED

individual child's needs

CONTROLLER to prevent exacerbations and control symptoms

Low dose ICS taken whenever SABA taken*

Consider daily

low dose ICS

STEP 1

Other controller options (limited indications, or less evidence for efficacy or safety)

RELIEVER

*Anti-inflammatory relievers (AIR)

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Child and parent/caregiver preferences and goals

Treatment of modifiable risk factors
& comorbidities
Non-pharmacological strategies
Asthma medications (adjust down or up)
Education & skills training

STEP 2 Daily low dose inhaled corticosteroid (ICS) (see table of ICS dose ranges for children)	STEP 3 Low dose ICS- LABA, OR medium dose ICS, OR very low dose ICS-formoterol maintenance and reliever (MART)	STEP 4 Medium dose ICS-LABA, OR low dose ICS-formoterol maintenance and reliever therapy (MART). Refer for expert advice	assessment ± higher dose ICS-LABA or add-on therapy, e.g. anti-IgE, anti-IL4Rα, anti-IL5
Daily leukotriene receptor antagonist (LTRA), or low dose ICS taken whenever SABA taken*	Low dose ICS + LTRA	Add tiotropium or add LTRA	As last resort, consider add-on low dose OCS, bu consider side-effe

As-needed SABA (or ICS-formoterol reliever* in MART in Steps 3 and 4)

STEP 5

Refer for

STICS Trial

- Two inhalations: ullet
 - 44 ug of Fluticasone 2x/day

- Two inhalations:
 - 44 ug Fluticasone 2x/day
 - During exacerbation (yellow
 - zone), 220 ug of Fluticasone
 - 2x/day

STICS Trial Findings

Outcomes	Low-Dose Group (N=127)	High-Dose Group (N=127)	Treatment Effect (95% CI) <u>†</u>	P Value
Primary outcome				
No. of exacerbations per year (95% CI)	0.37 (0.25 to 0.55)	0.48 (0.33 to 0.70)	1.3 (0.8 to 2.1)	0.30

AIM 1

STICS Ancillary Methods

OUTCOMES

- Rate of severe asthma exacerbations treated with systemic glucocorticoids during the blinded treatment period
- Time to first exacerbation treated with systemic glucocorticoids
- Time to treatment failure

MEDIAN DICHOTOMIZED

- Mean air pollutant exposure over the blinded treated period
- Poverty, race, weight, BMI, MUA & HPSA

AIM 1

MODELS

Generalized linear model log link function and response following a negative binomial distribution.

Stratified Cox Proportional Hazards regression extension for time-to-event outcomes.

STICS Ancillary Findings: PM_{2.5} **Survival Curves**

Distribution of Yellow Zones by Treatment Comparing the number of yellow zones across treatm

Survival Curves

AIM 1

Time to Treatment Failure

Models adjusted for sex, race, age, pets, percent below poverty level

Survival Curves

Time to First Exacerbation Treated with Prednisone

Strata + 1xICS + 5xICS

AIM 1

Survival Curves Time to Treatment Failure

STICS Ancillary Findings: HPSA **Survival Curves**

Survival Curves

Time to First Exacerbation Treated with Prednisone

Strata + 1xICS + 5xICS

AIM 1

Time to Treatment Failure

Strata + 1xICS + 5xICS

AIM 1

Models adjusted for sex, race, age, pets, percent below poverty level

acerbation Rates by HPSA					
_	_				
PSA	HPSA				

- We saw no effect modification by any air pollutants on interest on either asthma exacerbation rate or time to first exacerbation, or time to treatment failure.
- Receiving the increased dose of ICS dose, compared to the low dose, conferred an increased asthma exacerbation rate among children living in non-medically underserved areas and non-health provider shortage areas

Modification of the association between ICS + LABA Step-up and Asthma by Air Pollution in Trial Participants with Poorly Controlled Asthma

BARD Trial

BARD RCT design. Each treatment period lasted 14 weeks (the initial two weeks of each period were considered washout periods).

AIM 2

Double Fluticasone + Salmeterol (2xICS + LABA)

Quintuple Fluticasone + Salmeterol (5xICS + LABA)

Original BARD Trial Findings

STEP-UP THERAPY IN BLACK PATIENTS WITH ASTHMA

BARD RCT design. Each treatment period lasted 14 weeks (the initial two weeks of each period were considered washout periods) (N= 211).

BARD Trial Reanalysis

Generalized Mixed Models with Random Intercept

 $E[Y_{ij}] = \beta_0 + \beta_1 treatment_{ij}$ + β_2 air pollutant_{ij} + β_3 *treatment_{ij}* * Air pollutant_{ij} $+ \beta_4 PreRandCovs_i + b_{0i}$

Median Dichotomized Air Pollution Exposure

Treatment Period Specific PM_{2.5} NO_2 O_3

BARD Trial Reanalysis

imple Characteristics at Baseline					
	F , N = 91 M , N = 133		= 133		
acteristic	Ν	N = 91 ¹	Ν	N = 133 ¹	
nrollment	91	8.77 (6.97, 10.28)	133	8.30 (7.06, 9.75)	
Background	91		133		
panic or Latino		6 (6.6%)		14 (11%)	
Hispanic or Latino		85 (93%)		119 (89%)	
-VC	91	0.82 (0.77, 0.87)	133	0.82 (0.75, 0.86)	
ow Fed Poverty Line	91	24 (15, 33)	133	21 (12, 29)	
Score	91	22 (20, 24)	132	22 (19, 24)	
	91		133		
ck or African American		86 (95%)		124 (93%)	
ier		5 (5.5%)		8 (6.0%)	
erican Indian or Alask*				1 (0.8%)	
), F= female, M= male.					

BARD Trial Reanalysis

O₃ Exposure

Low O3

High O3

BARD Ancillary Findings

- **Effect Modification:** Treatment efficacy varied based on air pollution levels.
- **Treatment Observations:** 5xICS+LABA improved asthma control and lung function mainly in areas with lower PM_{2.5} levels.
- **Impact of Air Pollution:** High PM_{2.5} may contribute to reduced treatment responsiveness.

Gomez et al., In preparation

Effects of Air Pollution on Asthma by Asthma Phenotype and Treatment

SIENA Trial

Evaluated the response to monotherapy:

- LAMA vs Placebo
- ICS vs Placebo

AIM 3

 \rightarrow

SIENA Trial

A note on asthma phenotypes and endotypes

Phenotypes: Observable characteristics of the disease based on clinical features, triggers, and response to treatment

Endotypes: Specific pathophysiological mechanisms that drive the observable characteristics of different phenotypes.

doi:10.1177/1753465816632638

What is the effect of exposure to air pollution exposure on Asthma Treatment Failure BETWEEN eosinophilic and non-eosinophilic participants?

Treatment Failure

What is the effect of exposure to air pollution exposure on Asthma Treatment Failure as modified by treatment with ICS and LAMA compared to placebo?

AIM 3

Treatment Failure

Our Approach

Generalized Linear Mixed Models random intercept for each individual

 $E[Y_{ij}] = \beta_0 + \beta_1 \text{Air Pollutant}_{ii} +$ β_2 Phenotype_i + β_3 Air *Pollutant_{ii}* * Phenotype_i + $\beta_4 Covs + b_{0i}$

Results

Models adjusted for baseline provocative concentration of inhaled methacholine (PC20), Median fraction of exhaled nitric oxide, eczema or atopic dermatitis

Our Approach

Generalized Linear Mixed Models random intercept for each individual

 $E[Y_{ij}] = \beta_0 + \beta_1 \text{Air Pollutant}_{ii} +$ β_2 Phenotype_i + β_3 Air Pollutant_{ii} * Phenotype_i + $\beta_4 Covs + b_{0i}$

 $E[Y_{ij}] = \beta_0 + \beta_1 \operatorname{Air} Pollutant_{ij} + \beta_1 \operatorname{Air} Pollutant_{ij}$ β_2 Treatment_{ij} + β_3 Air Pollutant_{ij} * Treatment_{ij} + $\beta_4 Covs + b_{0i}$

Results

Models adjusted for baseline provocative concentration of inhaled methacholine (PC20), Median fraction of exhaled nitric oxide, eczema or atopic dermatitis

SIENA Findings

- Asthma phenotypes may modify the association between PM_{2.5} and treatment failure.
- Treatment Observations: Treatment significantly modified the association between PM_{2.5} NO₂ and O₃ and the odds of treatment failure

Gomez et al., In preparation

Limitations

Strengths

- Post Hoc Analyses
- Participant retention
- Applicability of Findings

- Data richness
- Innovative approach
- Focus on vulnerable populations

Implications

- Holistic Treatment Plans
- Efficacy and Effectiveness gap
- Contribution to the field

FUTURE

Methodological Developments - Effectiveness

- Populations
- Representativeness
- Move away from exploratory approach

DIRECTIONS

Acknowledgments

Ellen Kinnee, MS

Joel Kaufman MD, MPH & Michael T. Young, PhD

Funding EOH Department Clougherty Lab

AsthmaNet Participants & Research Coordinators

Questions?

Email Address

Website

Lizbeth.Gomez@Drexel.edu lizbethgomez.github.io